The normal mechanisms of pregnancy-induced liver growth are not maintained in mice lacking the bile acid sensor Fxr.

نویسندگان

  • Alexandra Milona
  • Bryn M Owen
  • Saskia van Mil
  • Dirk Dormann
  • Chikage Mataki
  • Mohamed Boudjelal
  • William Cairns
  • Kristina Schoonjans
  • Stuart Milligan
  • Malcolm Parker
  • Roger White
  • Catherine Williamson
چکیده

Rodents undergo gestational hepatomegaly to meet the increased metabolic demands on the maternal liver during pregnancy. This is an important physiological process, but the mechanisms and signals driving pregnancy-induced liver growth are not known. Here, we show that liver growth during pregnancy precedes maternal body weight gain, is proportional to fetal number, and is a result of hepatocyte hypertrophy associated with cell-cycle progression, polyploidy, and altered expression of cell-cycle regulators p53, Cyclin-D1, and p27. Because circulating reproductive hormones and bile acids are raised in normal pregnant women and can cause liver growth in rodents, these compounds are candidates for the signal driving gestational liver enlargement in rodents. Administration of pregnancy levels of reproductive hormones was not sufficient to cause liver growth, but mouse pregnancy was associated with increased serum bile acid levels. It is known that the bile acid sensor Fxr is required for normal recovery from partial hepatectomy, and we demonstrate that Fxr(-/-) mice undergo gestational liver growth by adaptive hepatocyte hyperplasia. This is the first identification of any component that is required to maintain the normal mechanisms of gestational hepatomegaly and also implicates Fxr in a physiologically normal process that involves control of the hepatocyte cell cycle. Understanding pregnancy-induced hepatocyte hypertrophy in mice could suggest mechanisms for safely increasing functional liver capacity in women during increased metabolic demand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New horizons in the regulation of bile acid and lipid homeostasis: critical role of the nuclear receptor FXR as an intracellular bile acid sensor.

Mice lacking the nuclear bile acid receptor FXR/BAR developed normally and were outwardly identical to wild-type littermates. FXR/BAR null mice were distinguished from wild-type mice by elevated serum bile acid, cholesterol, and triglycerides, increased hepatic cholesterol and triglycerides, and a proatherogenic serum lipoprotein profile. FXR/BAR null mice also had reduced bile acid pools and r...

متن کامل

Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids.

The bile acid receptor farnesoid X receptor (FXR) is a key regulator of hepatic defense mechanisms against bile acids. A comprehensive study addressing the role of FXR in the coordinated regulation of adaptive mechanisms including biosynthesis, metabolism, and alternative export together with their functional significance is lacking. We therefore fed FXR knockout (FXR(-/-)) mice with cholic aci...

متن کامل

Cholesterol feeding prevents hepatic accumulation of bile acids in cholic acid-fed farnesoid X receptor (FXR)-null mice: FXR-independent suppression of intestinal bile acid absorption.

Cholic acid (CA) feeding of farnesoid X receptor (Fxr)-null mice results in markedly elevated hepatic bile acid levels and liver injury. In contrast, Fxr-null mice fed cholesterol plus CA (CA+Chol) do not exhibit liver injury, and hepatic bile acid levels and bile acid pool size are reduced 51 and 40%, respectively, compared with CA-treated Fxr-null mice. These decreases were not observed in wi...

متن کامل

Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist.

Bile acids are synthesized from cholesterol in the liver and further metabolized by the gut microbiota into secondary bile acids. Bile acid synthesis is under negative feedback control through activation of the nuclear receptor farnesoid X receptor (FXR) in the ileum and liver. Here we profiled the bile acid composition throughout the enterohepatic system in germ-free (GF) and conventionally ra...

متن کامل

Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis.

Farnesoid X receptor (FXR) belongs to the nuclear receptor superfamily with its endogenous ligands bile acids. Mice with whole body FXR deficiency develop liver tumors spontaneously, but the underlying mechanism is unclear. Moreover, it is unknown whether FXR deficiency in liver alone serves as a tumor initiator or promoter during liver carcinogenesis. This study aims to evaluate the effects of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 298 2  شماره 

صفحات  -

تاریخ انتشار 2010